

ID code: 23cfcg

TEST REPORT

Report No.

DNW-20230250005

Name of Product Smart Power Sensor

Client

Zhejiang Chint loT Technology Co., Ltd.

Tested Company Zhejiang Chint loT Technology Co., Ltd.

Type of Test

Entrust Test

Zhejiang Institute of Metrology

Approval Date

2023 / 02 / 15

Year / Month / Date

Zhejiang Institute of Metrology TEST REPORT

		TEST REPORT			
	Sample Name	Meter Smart Power Sensor			
	Туре	DDSU666-IX			
Meter Under	Specification	240V, 5(63)A, 50Hz			
Test	Accuracy Class	Cl. 0.5			
	Serial Number	202302080165			
	Manufacturer	Zhejiang Chint loT Technology Co., Ltd.			
Client		Zhejiang Chint loT Technology Co., Ltd.			
Test Standard	IEC62052-11:2020 Electricity metering equipment-General requirements, tests and test conditions- Part 11: Metering equipment IEC62053-21:2020 Electricity metering equipment-Particular requirements-Part 21: Static meters for active energy(classes 0.5, 1 and 2)				
Test Items	Refer to "test content"				
Date of Sample Received	Feb. 9th, 2023				
Test period	Feb. 9th, 2023~Feb. 13th, 2023				
Date issued	Feb. 15th, 2023				
Summary	For the request of the customer, the samples are tested according to the standard IEC 62052-11:2020, IEC62053-21:2020. All the test result are formulaed with the requirements of the standards.				
	C. Canal	於哈州寺田音			

Approved by:

国和国

Checked by:

都る中

Compiled by:

际。谁

TEST CONTENTS

1. Accuracy requirements	4
1.1. Meter constant	
1.2. Initial start-up of the meter	4
1.3. Test of no-load condition	
1.4. Starting current test	4
1.5. Limit of error due to variation of the current	5
2. External static magnetic fields	6
3. Tests of immunity to other influence quantities	6
3.1. Frequency variation	6
3.2. Ambient temperature variation	7
3.3. Voltage variation	8
Annex A Appearance	9
Annex B Symbols in this report	10
Annex C Main test equipments	11

1. Accuracy requirements

1.1. Meter constant

Test condition: Voltage: U_n , current: I_{max} , frequency: f_n , room temperature: 22.6°C, relative humidity: 50%

Test result:

Paguiramenta of standard	Test result
Requirements of standard	<i>N</i> <u>0</u> 1
The relation between the test output and the indication in the display shall comply with the marking on the name-plate	Pass

Conclusion: Pass

1.2. Initial start-up of the meter

Test condition: The meter is performed with only I_{max} in the current circuit at start and then energized

with nominal voltages $U_{\rm n}$, the start-up time of the meter is measured from the moment of energizing the voltage circuits until the moment the test output produces the first pulse.

Voltage: $U_{\rm p}$, frequency: $f_{\rm p}$, temperature: 22.6°C, relative humidity: 50%

Test result:

We have	Test result	
Requirements of standard	№ 1	
The meter shall be functional within 10s	Pass	

Conclusion: Pass

1.3. Test of no-load condition

Test condition: The voltage is applied to the voltage circuits with no current flowing in the current

circuits, the test time is calculated according to the standard.

Frequency: f_n , room temperature: 23.0°C, relative humidity: 50%

Test result:

			Test result
Voltage	Current	Requirements of standard	№1
1.1 <i>U</i> _n	Open circuit	The test output shall not produce more than 1 pulse	Pass

Conclusion: Pass

1.4. Starting current test

Test condition: The voltage is applied to the voltage circuits with starting current flowing in the current

circuits, the test time is calculated according to the standard;

Voltage: $U_{\rm n}$, frequency: $f_{\rm n}$, room temperature: 23.0 °C, relative humidity: 48%

Test result:

	cosφ	D. J. C. C. davidson		Test result
		Current	Requirements of standard	№1
	1	0.004 <i>I</i> _n	The meter shall start and continue to register at the starting current	Pass
	1 '	0.00 1211	at the starting current	

1.5. Limit of error due to variation of the current

Test condition: The test is performed using comparison test methods with the pulse output of the meter

under reference conditions.

Voltage: $U_{\rm n}$, frequency: $f_{\rm n}$, room temperature: 22.6 °C, relative humidity: 50 %

Test result:

Positive:

cosφ	Current	Limit of error (%)	Relative error(%)
			№1
_	$0.05I_{\rm n}$	±1.0	0.01
	0.1 <i>I</i> _n		0.00
1.0	$0.5I_{\rm n}$		-0.04
1.0	I_{n}	±0.5	-0.06
	$I_{\text{max}}/2$		-0.05
	I _{max}		-0.02
	0.1 <i>I</i> _n	±1.0	0.32
	0.2 <i>I</i> _n		0.26
	0.5 <i>I</i> _n		0.13
0.5L	I _n	±0.6	-0.01
	$I_{\text{max}}/2$		-0.39
	I_{\max}		-0.42
	0.1 <i>I</i> _n	±1.0	-0.12
	$0.2I_{\rm n}$		-0.11
	0.5 <i>I</i> _n		-0.07
0.8C	$I_{\rm n}$	±0.6	-0.03
	I _{max} /2		0.07
	I _{max}		0.05

Negative:

			Relative error(%)
cosφ	Current	Limit of error (%)	№1
	$0.05I_{\rm n}$	±1.0	0.01
	$0.1I_{\rm n}$		0.00
	$0.5I_{\rm n}$		-0.04
1.0	I_{n}	±0.5	-0.06
I -	$I_{\text{max}}/2$		-0.05
I -	I_{\max}		-0.03
	0.1 <i>I</i> _n	±1.0	0.26
	0.2 <i>I</i> _n		0.18
	$0.5I_{\rm n}$		0.04
0.5L	I _n	±0.6	-0.11
	$I_{\text{max}}/2$		-0.27
I -	I _{max}		-0.23
	0.1 <i>I</i> _n	±1.0	-0.12
	0.2 <i>I</i> _n		-0.11
	$0.5I_{\rm n}$		-0.07
0.8C	In	±0.6	-0.03
	$I_{\text{max}}/2$		0.11
	I _{max}		0.09

2. External static magnetic fields

Test condition: The voltage is applied to the voltage circuits with current flowing in the current circuits.

For electromagnet induction: magneto-motive force is 1000At (ampere-turns); Voltage: U_n , frequency: f_n , room temperature: 22.7°C, relative humidity: 51%

Test result:

Static magnetic			Test result
field	Meter surface	Requirements of standard	№1
	Front		Pass
	Back	Criteria A	Pass
1000At	Тор		Pass
	Left		Pass
-	Right		Pass

Meter measurement characteristic during the test:

Voltage Current	urrent cosφ	Static magnetic field	Meter surface	Variation limits	Maximum variation of error (%)
				of error (%)	№ 1
$U_{ m n}$ $I_{ m n}$	<i>I</i> _n 1 1000At	1000At	Front	±2.0	0.04
			Back		0.05
			Тор		0.07
		Left		0.05	
				Right	

Conclusion: Pass

3. Tests of immunity to other influence quantities

3.1. Frequency variation

Test condition: The error variation is measured compared to the error at f_n .

Voltage: $U_{\rm n,}$ room temperature: 22.6 °C , relative humidity: 50%

Test result:

	cy cosφ	Variation limits o	Variation limits of	Variation of relative error(%)	
Frequency		Current	error(%)	№1	
		$0.05I_{\rm n}$	The same of the sa	0.01	
	1	I_{n}		-0.01	
		I_{\max}		-0.01	
$0.98f_{\rm n}$		0.1 <i>I</i> _n		0.03	
	0.5L	I_{n}		0.00	1
		I_{max}		0.19	3
		$0.05I_{\rm n}$	±0.2	0.03	ζ,
	1	I_{n}		0.01	'
		I_{\max}		0.01	
1.02f _n		0.1 <i>I</i> _n		0.04	押
	0.5L	I_{n}		0.00	//!
		I_{max}		0.07	

3.2. Ambient temperature variation

Test condition: The temperature coefficient is determined for the specified operating temperature. The

specified operating temperature is divided into sub-ranges between 15 K and 23 K.

The meter is placed in the climate chamber at the test temperature for more than 2h to get a stable state before error test.

Voltage: U_n , frequency: f_n room temperature: 22.1°C, relative humidity: 50%

Test result:

Temperature range	cosφ	Current	Limit of mean temperature coefficient(%/K)	Mean temperature coefficient(%/K) №1
		0. 1 <i>I</i> _n		-0.008
	1	$I_{\rm n}$	±0.03	-0.003
		I_{\max}		-0.009
-10°C~5°C		$0.2I_{\rm n}$		-0.038
	0.5L	I_{n}	±0.05	-0.006
	0.02	I_{\max}		-0.025
		0. 1 <i>I</i> _n		-0.007
	1	I_{n}	±0.03	-0.004
		I_{\max}		-0.008
5°C~23°C	0.5L	$0.2I_{\rm n}$	±0.05	-0.023
		I_{n}		-0.010
		I_{\max}		0.017
	1	0. 1 <i>I</i> _n		-0.005
		I_{n}	±0.03	-0.005
		I_{\max}		-0.003
23°C~40°C		$0.2I_{\rm n}$		-0.013
	0.5L	I_{n}	±0.05	-0.009
	0.52	I_{\max}		-0.049
		0. 1 <i>I</i> _n		-0.003
	1	I_{n}	±0.03	-0.003
	_	I_{max}		-0.003
40°C~55°C		$0.2I_{\rm n}$		-0.004
	0.5L	$I_{\rm n}$	±0.05	-0.003
		I_{\max}		-0.018

3.3. Voltage variation

Test condition: The error variation is measured compared to the error at U_{n}

Frequency: f_n , room temperature: 22.6°C, relative humidity: 50%

Test result:

X2.1.			Variation Limit of	Variation of relative error(%)
Voltage	cosφ	Current	error(%)	№ 1
$0.8U_{ m n}$		0.05I _n	±0.25	0.01
	1.0	I _n		0.00
	1.0	I _{max}		0.00
		0.1 <i>I</i> _n	±0.5	0.00
	0.5L	$I_{\rm n}$		0.00
	U.SL	I _{max}		0.09
		0.01 <i>I</i> _n	±0.25	0.00
	1.0	$I_{\rm n}$		0.00
	1.0	I _{max}		0.01
$0.9U_{n}$		0.1 <i>I</i> _n	±0.5	0.01
	0.5L	$I_{\rm n}$		0.00
	1.0	I_{\max}		0.01
		$0.01I_{\rm n}$	±0.25	0.00
		I_{n}		0.00
		I_{\max}		0.01
$1.1U_{ m n}$	0.5L	$0.1I_{\rm n}$	±0.5	0.02
		I_{n}		0.00
		I_{\max}		-0.05
1.15 <i>U</i> _n	1.0	$0.01I_{\rm n}$	±0.25	0.00
		I_{n}		0.00
				0.01
	0.5L	I_{max} 0.1 I_{n}	±0.5	0.03
		$I_{\rm n}$		0.01
		I_{max}		-0.08

	cosφ	Current	Limit of error(%)	Variation of relative error(%)
Voltage				№ 1
$0.7U_{\rm n}$	27			-0.01
$0.6U_{\rm n}$	1			-0.01
$0.5U_{\rm n}$	1.0	I_{n}	-100~10	-0.01
$0.4U_{\rm n}$				-0.02
$0.3U_{\rm n}$				-0.05
$0.3U_{\rm n}$				-0.13
$0.2U_{\rm n}$				-100

Annex A Appearance

Front view

Annex B Symbols in this report

Symbol	Designation	Value
U_{n}	Nominal voltage	240V
f_{n}	Nominal frequency	50Hz
I_{n}	Nominal current	5A
$I_{ m max}$	Maximum current	63A

Annex C Main test equipments

Device name	Туре	Serial number
Three phase electricity meter test device	PTC-8320H	1404137
DC continuous magnet induction test device	MFDC1000	20130001
Climatic test chamber	C7-340	54260000000010
Three phase electricity meter test device	PTC-8320M	1404138

End of report

Statement of this Organization

- 1、The test report will be invalid without "检验检测专用章" (quality inspection seal).
- 2、The organization is responsible only for the full report with "检验检测专用章" (quality inspection seal).
- 3. Incomplete copy of the contents of this report is invalid unless written approved by the organization.
- 4. The altered test report is invalid.
- 5. Please put forward timely if there is disagreement of this report.
- 6. This test result is only valid for the test samples.

Add: No. 300 Xiasha Road, Qiantang, Hangzhou city, Zhejiang province

Tel: 0571-85027145

Postal Code: 310018

Website: www.zjim.cn

